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Braiding: agp

@ standard perfect-fluid structures @ mixes the kinetic terms of the

@ not present in archetypal scalar and metric

“modified gravity” models @ responsible for all the new
scale-dependence

Planck mass run-rate: app Tensor speed excess: at

-} %Mf M? effective Planck mass @ determines the speed of

. . gravitational waves
@ anisotropic stress

@ anisotropic stress
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You choose

@ Fields (The rest is done by your PC! ]
@ Gauge symmetries

@ Number of derivatives
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@ Generic action

S = / d3xdt L (goo, 8oir 8ij» A% Ai) +=Sm ’

@ Scalars with second derivatives

@ Quadratic Lagrangian

£ — ‘Cgoogoo(sggo aF £g00g005g005'g00 ¢ £A"A,-5A’5Ai + ... J

@ Quadratic Lagrangian in SVT

£<2> - Egoogoolpz + Cgoogoolplp + EA’A, (ai’j"ai‘j" + di‘j"i) + .. J
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Noether constraints

(5[,(2) . (5[,(2) . 5[,(2) _ 0 Egoogoo =0
5yf - = £A0Ao+£A0A0:0

r2—r,@ |~ 61 e

Minimal number of free functions of time



Results and (Unification?)

Name Description ST | VT
MZ (xp) Planck Mass (run-rate) v | v
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ac Conformal coupling excess | 0 v
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ay Vector mass mixing 0 v
XA Auxiliary friction 0 v
as Vector Speed 0 v
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(Unification: OK only for practical purposesl)
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Conclusions

e Efficient (for computer-aided calculations) method to
calculate EFT theories given: fields, gauge symmetries and
number of derivatives

@ Phenomenological description of Vector-Tensor,
Einstein-Aether and Tensor-Tensor theories

@ It is possible to write a unified action, but just for practical
purposes

Thank you!



